INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. $U(\mu-0.5, \mu+0.5)$, where $-\infty<\mu<\infty$. Let $X_{(1)}<X_{(2)}<\cdots<X_{(n)}$ be order statistics. Find
(a) $E\left(X_{(i)}\right)$ and $\operatorname{Var}\left(X_{(i)}\right), 1 \leq i \leq n$; and
(b) $E\left(X_{(k)}-X_{(l)}\right)$ and $\operatorname{Var}\left(X_{(k)}-X_{(l)}\right), 1 \leq l<k \leq n$.
(c) Define $\hat{\mu}=\sum_{i=k+1}^{n-k} X_{(i)} /(n-2 k)$, where $1 \leq k<n / 2$ is an integer. Find $E(\hat{\mu})$ and $\operatorname{Var}(\hat{\mu})$. [4+4+7]
2. Suppose $X_{1}, X_{2}, X_{3}, X_{4}$ are i.i.d Poisson $(\lambda), \lambda>0$ and let $Y=X_{1}+X_{2}$, $Z=X_{3}+X_{4}$.
(a) Find the conditional distribution of $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ given (Y, Z) and using it show that (Y, Z) is sufficient for λ.
(b) Show that (Y, Z) is not minimal sufficient for λ.
3. Suppose $X_{1}, X_{2}, \ldots, X_{m}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent random samples, respectively, from $N\left(2 \mu, 10^{2}\right)$ and $N\left(\mu, 5^{2}\right)$, where $-\infty<\mu<\infty$ is the unknown parameter of interest.
(a) Find minimal sufficient statistic for μ. Is it complete?
(b) Find the MLE and UMVUE of μ.
(c) Find the Fisher's Information number, $I(\mu)$, for the combined sample.

$$
[4+6+5]
$$

4. For observations Y_{1}, \ldots, Y_{n}, consider the linear model

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad i=1, \ldots, n
$$

where x_{i} is the value of a co-variate corresponding to Y_{i} and ϵ_{i} are i.i.d. errors having the $N\left(0, \sigma^{2}\right)$ distribution. Here β_{0}, β_{1} and $\sigma^{2}>0$ are unknown parameters and x_{i} are treated as known constants.
(a) Show that the distribution of Y_{1}, \ldots, Y_{n} belongs to k-variate exponential family. Find k.
(b) Find minimal sufficient statistics for $\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)$. Is it complete? [5+5]

